
International Journal of Scientific & Engineering Research, Volume 3, Issue 8, August-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

An Analysis of Vertical Splitting Algorithms in
Telecom Databases

Vinay Verma, Ruchika Bhaskar, Manish Kalra

Abstract— Distribution design includes making decisions on the allocation and fragmentation of data across the locations of a computer

network. Vertical splitting is the process of subdividing the attributes of a relation to generate fragments. In this paper, we propose an

analysis for vertical splitting algorithm using prototype approach. This approach starts from the attribute affinity matrix and generates initial

clusters based on the affinity values between attributes (Cluster Affinity Matrix). Then, it uses the database according to optimal splitting

solution to produce final groups that will represent the fragments. Then we use allocate these f ragments in centralized distributed

environment and find the analyzed result that shows improvement in the query response time.

Index Terms— Distributed Database, Centralized Database, Telecom Database, Vertical Fragmentation, Bond Energy Algorithm, Affinity

Matrix.

——————————  ——————————

1 INTRODUCTION

ISTRIBUTED and parallel processing on database man-
agement systems (DBMS) is a proficient way of improv-
ing performance of application that work on large vo-

lumes of data. This may be achieved by removing irrelevant
data accessed during the execution of queries and by reducing
the data exchange among sites, which are the two main goals
of the design of Distributed databases [2].

The primary concern of distributed database systems is to
design the fragmentation and allocation of the underlying da-
tabase. The distribution design involves making decisions on
the fragmentation and placement of data across the sites of a
computer network. The first phase of the distribution design
in a top-down approach is the fragmentation phase, which is
the process of clustering into fragments the information ac-
cessed simultaneously by applications. The fragmentation
phase is then followed by the allocation phase, which handles
the physical storage of the generated fragments among the
nodes of a computer network, and the replication of frag-
ments.

2 RELATED WORK

Most of the vertical splitting algorithm has started from con-
structing an attribute affinity matrix from the attribute usage
matrix: the Attribute affinity matrix is an n x n matrix for the
n-attribute problem whose (i, j) element equals the “between
attributes” affinity which is the total number of accesses of
transactions referencing both attributes i and j. An iterative
binary partitioning method has been used in [8] and [5] based
on first clustering the attributes and then applying empirical
objective functions or mathematical cost functions to perform

the fragmentation. The concept of using fragmentation of data
as a means of improving the performance of a database man-
agement system has often appeared in the literature on file
design and optimization. Attribute partitioning and attribute
clustering have been studied earlier by [4], [3], [6], [8], [9] has
discussed the implementation of a self-reorganizing database
management system that carries out attribute clustering. They
also show that in a database management system where sto-
rage cost is low compared to the cost of accessing the sub files,
it is beneficial to cluster the attributes, since the increase in
storage cost will be more than offset by the saving in access
cost. Hoffer [6] developed a non-linear, zero-one program,
which minimizes a linear combination of storage, retrieval and
update costs, with capacity constraints for each file.

Navathe et al [8] used a two-step approach for vertical par-
titioning. In the first step, they used the given input parame-
ters in the form of an attribute usage matrix to construct the
attribute affinity matrix on which clustering is performed. Af-
ter clustering, an empirical objective function is used to per-
form iterative binary partitioning. In the second step, esti-
mated cost factors reflecting the physical environment of
fragment storage are considered for further refinement of the
partitioning scheme. Cornell and Yu [5] proposed an algo-
rithm, as an extension of Navathe et al [8] approach, which
decreases the number of disk accesses to obtain an optimal
binary partitioning. This algorithm uses specific physical fac-
tors such as number of attributes, their length and selectivity,
cardinality of the relation etc.

Navathe and Ra have developed a new algorithm based on
a graphical technique [7]. This algorithm starts from the
attribute affinity matrix by considering it as a complete graph
called the “affinity graph” in which an edge value represents
the affinity 1-4244-1364-8/07/$25.00 ©2007 IEEE between the
two attributes, and then forms a linearly connected spanning
tree. The algorithm generates all meaningful fragments in one
iteration by considering a cycle as a fragment. A linearly con-
nected tree has only two ends. By a “linearly connected tree”
we imply a tree that is constructed by including one edge at a
time such that only edges at the “first” and the “last” node of
the tree would be considered for inclusion. We then form “af-

D

————————————————

 Vinay Verma, PG Scholar, Computer Science Department, Jagannath
University, Jaipur, Rajasthan, India
PH-00919413952047. E-mail: ervinayv@gmail.com

 Ruchika Bhaskar, Research Student, Computer Science Department, Rajas-
than Technical University, Kota, Rajasthan, India
PH-00919414238267. E-mail: ruchikabhaskar10@gmail.com

 Manish Kalra, Assistant Professor, Computer Science Department, JNU,
Jaipur, Rajasthan, India

mailto:ruchikabhaskar10@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

finity cycles” in this spanning tree by including the edges of
high affinity value around the nodes and “growing” these
cycles as large as possible. After the cycles are formed, parti-
tions are easily generated by cutting the cycles apart along
“cut-edges”. In this paper we will use an algorithm to cluster
the database i.e. Bond Energy Algorithm (BEA). And use these
cluster affinity as input to find final fragments using PARTI-
TION algorithm. Then using prototypes we reach to the goal
of reducing response time of query using fragmentation and
show the mathematical result for proof.

3 BACKGROUND OF SPLITTING DATABASE

Today, mostly centralized databases are used to store and
manage data [11]. They carry the advantages of high degree of
security, concurrency and backup and recovery control. How-
ever, they also have disadvantages of high communication
costs (when the client is far away and communication is very
frequent), unavailability in case of system failure and a single
source bottleneck [3].

Research conducted in 1991 for distributed databases pre-
dicted a huge shift from traditional databases to distributed
databases in the coming arena primarily due to organizational
needs to manage huge amounts of data [11].
The telecommunication sector also wants to embrace this
technology of data distribution. But before distribution, frag-
mentation is a very important and critical task that needs to be
done.

Most of the telecom industries are using centralized tech-
nique in storage of their database. Centralized database has its
disadvantage of high communication cost. Some data is un-
available due to problem in server. To resolve these issues we
are moving to distribution of the database.

4 ANALYSIS OF ALGORITHM USED FOR SPLITTING THE

DATABASE

The vertical fragmentation proposed in this paper is executed
in following manner. (1) When a query uses attribute from a
relation its value is true (2) Information about databases and
query are notified before fragmentation process. (3)Query
consists of attributes. The use of attribute means accessing to
the value of an existing attribute without any side-effect. Our
fragmentation is composed of attribute fragmentation. A set of
attributes defined in a relation is vertically partitioned into
attribute fragments on basis of application queries like:

1. Normal

Find subscriber via peer_id and area
Find Narrative

2. Recharge
Find subscriber via peer_id and area
Find subscriber_id
Find Narrative(units)
Update Narrative(units)

Update subscriber (Sub_Param1, 2, 3)
3. Balance Inquiry

Find subscriber via peer_id and area
Find Narrartives etc.

Figure 1: Sample Queries of experiment

After, the attribute fragments are generated, the attribute
fragmentation is executed on basis of queries .Also, a query
can access attributes of other relation on a database hierarchy.
To reflect these characteristics of queries, we calculate
QA(query access) matrix, FA(site access) matrix and
AU(attribute usage) matrix. In FA matrix, QA matrix contains
all description in of attribute used by Sites of different rela-
tions and to represent attributes usage by different queries.

4.1 QA matrix:

QA (Query Access) matrix represents the use of attributes in
application queries. Figure 2 and Figure 3 is an example of the
QA matrix for subscriber relation and Narrative relation used
as database in this paper.

1 1 1 1 0 1 1 1 0 1 0
1 1 0 1 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0

Figure 2: SUBSCR QA Matrix

1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 0 1 0
1 1 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 0
0 0 0 0 0 0
0 1 0 1 0 0

Figure 3: NARRATIVE QA Matrix

Each row means a query and each column means a
attribute Q1-A1, Q1-A2, Q1-A3……Q1-A11 are queries about
SUBSCR relation. And similarly in Figure 3 for NARRATIVE
relation. The entry "1" indicates that the query uses the corres-
ponding attributes. Attributes of other relation accessed by
query can be represented in QA matrix. For example, Q1 ac-
cesses to not only sub_id, peer_id, status, language of its own
relation SUBSCR but also narrative_id, sub_id, narrative_type,
and unit_type of relation NARRATIVE.

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Combined AQ matrix(CAQ)
1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0
1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 4: Combined AQ matrix (CAQ)

4.2 FA Matrix:

The access frequency represents the sum of number of ac-
cesses about query generated in one or more sites.

S1 S2 S3

Q1 10 15 5
Q2 0 3 2
Q3 15 1 0
Q4 0 5 6
Q5 8 0 0
Q6 25 20 25
Q7 0 0 10
Q8 0 6 4
Q9 2 8 20

Figure 5: Access Frequency Matrix(FA)

Figure 5 shows the access frequency of different queries by
different sites In QA matrix, A usage value of attribute Aj for a
query qi is defined as:
use(qi, Aj) = 1 if query qi accesses to

Aj = 0 otherwise
The AA (attribute affinity) matrix is generated from the

AQ matrix using the same technique as relational vertical
fragmentation approach.

Attribute Affinity Matrix aff(Ai, Aj)

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A

1

1

A1 190 150 99 132 24 30 30 30 70 30 0

A2 150 150 59 132 24 30 30 30 70 30 0

A3 99 59 99 41 8 30 30 30 0 30 0

A4 132 132 41 132 16 30 30 30 70 30 0

A5 24 24 8 16 24 0 0 0 0 0 0

A6 30 30 30 30 0 30 30 30 0 30 0

A7 30 30 30 30 0 30 30 30 0 30 0

A8 30 30 30 30 0 30 30 30 0 30 0

A9 70 70 0 70 0 0 0 0 70 0 0

A10 30 30 30 30 0 30 30 30 0 30 0

A11 0 0 0 0 0 0 0 0 0 0 0

Figure 6: Attribute Affinity Matrix (SUBSCR)

 A12 A13 A14 A15 A16 A17

A12 62 62 62 46 51 30

A13 62 102 72 86 61 30

A14 62 72 72 56 61 30

A15 46 86 56 86 45 30

A16 51 61 61 45 61 30

A17 30 30 30 30 30 30

Figure 7: Attribute Affinity Matrix (NARRATIVE)

The attribute affinity represents the strength of bond be-
tween the two attributes. The attribute affinity for two
attributes Ai and Aj defined as

aff(Ai, Aj)=k | use(qk, Ai) =1^ use(qk,Aj) =1acc (qk)

Where, aff(Ai, Aj) is affinity value between Ai and Aj, acc(qk)
is the total number of access of query qk generated in multiple
sites. Figure 6 and Figure 7 shows an example of AA matrix.

The AA matrix is needed to be clustered, and then becomes
to divide into attribute fragments. Bond Energy Algorithm
(BEA) [ll] is used to cluster the AA matrix. The purpose of
clustering is to combine large affinity value of AA matrix with
large affinity values, and the small one with small ones. The
result of clustering AA matrix in Figure 6 and Figure 7 is a CA
(C1uster Affinity) matrix shown in Figure 8. The partitioning
of generated along the main diagonal of the CA matrix.

5 IMPLEMENTATION AND COMPARISON

We have implemented the vertical class fragmentation pro-
posed in this paper using JAVA programming language on an
IBM-PC. The implementation have executed to the following
procedures. First, establish the example structure of class
schema and example queries with the access frequency.
Second, generate the UQA, UAU matrix for all tables. Third,
for each table, generate AA and CA matrixes.

Fourth, partition the CA matrixes and make the attribute
fragments. When we apply both BEA algorithm[16] and ver-
tical Partition algorithm[16]according to the Attribute usage
matrix and Attribute Affinity matrix we conclude to the frag-
ment results and selected one of the optimal solutions availa-
ble. So following fragments has been selected with primary
key [41].

Fragments of Subscr
S_fragment1 (Sub_id, Levy_Structure, Area, stage,
Sub_param1, Sub_param2)
S_fragment2 (Sub_id, Peer_id, Sub_group, sub_param3, Dis-
closure_date , Ascent)
Fragments of Narrative
N_Fragment1(Narrative_id, Sub_id, Narrative_type, Units, Un
it_Type)
N_Fragment2 (Narrative_id, Lower_Exceed_Limit

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

5.1 Testing Query Response Time Using Centralized
and Distribued Model

All models were developed using Java Programming Lan-
guage. We used MySQL to store the data in experiment. The
third party tools (WEKA, Rapid Miner etc.) were also used.

5.2 Comparison of Centralized and Distributed
Databases Response Time Figures

In this section we have compared the results from centralized
and distributed databases and discussed the performance of
the response time.

5.2.1 Min response time on sites

Figure 8: Comparison between Centralized and Distributed
database

Graph in Figure 8 shows the contrast of minimum values of all
queries in the centralized and distributed environment. We
can see that the values for the distributed environment are
less. The reason for this reduces is that in distributed databas-
es data is local to the sites and index table is short as compared
to the centralized databases. However, response time values
have been increased for first queries (General call query ex-
cluded from the chart).Since these queries fetch data from all
sites (fragments), so communication time contribute to in-
crease their response time. One important thing to note is that
the response time for sms charge and subs/v_group are al-
most the same for both environments. Since these queries fetch
data from one table only and they update only one column of
a small data set which is almost the same for both environ-
ments. So, there are no big variations in their response time in
the two environments.

5.2.2 Max response time

Figure 9 is about the maximum values of all queries for both
environments. Except for first query (General call) response
time for queries in the centralized environment is greater than

Figure 9: Comparison between Centralized and Distributed
database (Max time)

distributed environment. General call queries generate reports
by gathering data from all sites and they get data from all re-
mote sites as well. So, their response time is better in distri-
buted environment. However, in centralized environment all
data is at one place so data probing is fast for this query and
hence response time is less for these particular queries.

5.2.3 Avg. response time

Figure 10: Comparison between Centralized and Distributed
database (Avg time)

Graphs in Figure 10 shows that average values for distributed
database are fewer than centralized environment. Since in dis-
tributed databases data is reserved local to the site where it is
needed, so response time is very good. However, in case of
remote access in distributed environment, response time has
been augmented.

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 11: Occurrence Arrangement in Centralized and Dis-
tributed database

The graph in Figure 11 shows the average values of differ-
ent scenarios used in centralized and distributed databases.
Four queries (General call, Recharge, balance inquiry and SMS
charge) are used in these scenarios. General call query per-
forms both read and write operations. The purpose of these
scenarios is to find the impact on the response time if we
augment the ratio of general call to the total. The detail of
these scenarios is given in Figure 12. The last column of Figure
12 is designed using average values of different sites for these
four queries, then they were multiply with the ratio of each
query used in the scenarios and average was designed.

Percentage of Arrangements

Query G.

Call%

Re-

charge%

B. In-

quiry%

SMS

%

Scenario 1 10 5 9 76

Scenario 2 22 5 6 67

Scenario 3 35 6 10 49

Scenario 4 40 11 9 40

Scenario 5 65 5 9 21

Scenario 6 74 7 11 8

Scenario 7 7 7 7 79

Figure 12: Percentages of Arrangements

Their increasing pattern is almost the same. However, av-
erage response time in centralized database is more than dis-
tributed database. The data is accumulated at one place in cen-
tralized database, so it takes long to process a query. Moreo-
ver, data index tables are large to search.

6 CONCLUSION

The purpose of conducting this study is to know the impact on
the response time while moving from centralized to distri-
buted databases

Distributed databases have many aspects and every organ-

ization has certain preferences. For the telecom sector, the re-
sponse time is prioritized.

Our experiment showed that the average response time is
decreased if we switch from centralized database to distri-
buted database. In distribution we put the data to the site
where it is used most frequently. This locality of data reduces
the response time. In the distributed database, data is frag-
mented. These fragments are short compared to the full data-
base (centralized database contains maximum columns).
However, when we need data from multiple sites for a query
(report queries), the response time is increased. Accessing data
from multiple remote sites and then joining those takes long
time. But in the centralized database since data is at one place
so, it is easy and fast to search it. The purpose of conducting
this study is to know the impact on the response time while
moving from centralized to distributed databases using vertic-
al fragmentation.

Experiment results showed that the response time is de-
creased in distributed databases. Due to fragmentation data
set for single site contains less records than centralized data-
base, so response time is less.

REFERENCES

[1] Ceri, S. and Pelagatti, G. Distributed DatabasesPrinciples and Sys-

tems. NY, McGraw Hill, 1984.

[2] Ezeife, C. I. and Barker, K. Vertical Class Fragmentation in a Distri-

buted Object Based Svstem. TR 94-03, Univ. of Manitoba DeRt. Of

Computer Science, 1993.

[3] H.o ffer. 1. A.. and Severance. D. G. The Use of Cluster Analysis in

Physical Database Design.In Proceedings of 1st VLDB Conference,

Mass., 1975.

[4] Karlapalem, K. and Li, 8. Partitioning Schemes for Object Oriented

Database. In 5th InternationalWorkshop on Research Issues on Data

Engineering: Distributed Object Management, 1995.

[5] Karlapalem, K., Li, 8. and Vieweg,, S. Method Induced Partitioning

Schemes in Object OrientedDatabases. In 16th intemational confe-

rence on Distributed Computing System, Hong Kong, 1996.

[6] Karlapalem, K., Navathe, S. B. and Morsi, M. M.A. Issues in Distribu-

tion design. of object-oriented databases, in Distributed Object Man-

agement,Morgan Kaufmann Publishers, 1994.

[7] Lee, S. and Lim, H., Extension of Vertical Technical Conference on

Circuits/systems, Computers and Communications, Japan, 1997.

[8] Navathe, S. B., Ceri, S. Wiederhold, G. and Dou, J.Vertical partition-

ing algorithms for database design.in ACM TODS 9(4), 1984.

[9] Farhi Marir, Yahiya Najjar, Mahmoud Y. AlFaress, Hassan I. Abdalla,

“An Enhanced Grouping Algorithm for Vertical Partitioning Problem

in DDBs.

[10] Adrian Runceanu, Towards Vertical Fragmentation in Distributed

Databases.

[11] Ashraf, Imran and Khokhar, A.S. 2010. Principles for Distributed

Databases in Telecom Environment., Sweden.

[12] Huang , Y.-F. And Chen , J.-H. 2001. Fragment Allocation in Distri-

buted Database Design.

[13] Mitchell, C. Components of a Distributed Database.

[14] Jonker, W. 2000. Databases in telecommunications: international

workshop co-located with VLDB-99, Edinburgh, Scotland, UK, Sep-

tember 6th 1999: proceedings. Springer, Berlin.

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[15] Hvasshovd, S.-O. 1995. the clustRa telecom database: high availabili-

ty high throughput and real-time response Proceedings of 21st VLDB

Conference.

[16] Wiederhold, G., and Dou, J.,“Vertical Partitioning Algorithms for

Database Design,” ACM Trans.on Database Systems, Vol. 9, No.4,

Dec. 1984.

